Series VHP 180 W Power Resistor according to VDE 0160 und UL 94 V-0

A Miba Group Company

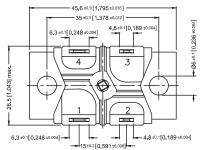
1/2

EBG Resistors's VHP series is rated at 180 W mounted to a heat sink. The increased height of the package makes the resistor ideal in applications where creeping distance must meet the VDE 0160 and UL 94 V-0 standards.

Features

- multiple resistors in 1 package
- Easy mounting using already existing infrastructure
- Non-Inductive design
- ROHS compliant
- Materials in accordance with UL 94 V-0 and VDE 0160

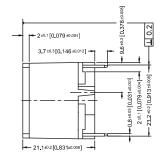
Technical Specifications

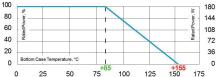

Resistance value	$1~\Omega \leq 1~M\Omega$ (higher values on special reques
Resistance tolerance	±1 % to ±10 %
Temperature coefficient	±250 ppm/°C (at +85°C ref. to + 25°C) lowerTCR on special request for limited ohmin
Power rating	up to 180 W at 85°C bottom case temp (see configurations)
Maximum working voltage	500~V (up to 1,000 V DC on special request = "S"-
Voltage proof	5,000 V DC, 3,000 V AC
Insulations resistance	10 GΩ min. at 1 kV DC
Insolation voltage between R1 & R2	500 V (1,000 V on special request)
Comparative Tracking Index (CTI)	standard > 200 V (> 500 V on special request = "H"-version)
Heat resistance to cooling plate	Rth < 0.40 K/W
Capacitance/mass	45 pF (typical), measuring frequency 10 kHz
Working temperatur range	-55°C to +155°C
Mounting - torque for base plate (static)	1.3 Nm to 1.5 Nm M5 screws
Weight	~38 g

Air distance contact to contact:

3	Contacts 1 and 2 resp. 3 and 4 - without fast-on-Plug: - with fast-on-Plug:	9.2 mm 8.2 mm
(4)	Contacts 1 and 4 resp. 2 and 3	

- (4)- without fast-on-Plug: 21.9 mm - with fast-on-Plug: 20.9 mm
- Contacts 2 resp. 3 and M5 (5) - mounting screw with washer 16.3 mm - without fast-on-Plug: - with fast-on-Plug: 15.9 mm Contacts 1 resp. 4 and M5 (6)
- mounting screw with washer - without fast-on-Plug: 15.5 mm - with fast-on-Plug: 15.0 mm


Dimensions in mm [inches]


lower TCR on special request for limited ohmic values
up to 180 W at 85°C bottom case temperature (see configurations)
500 V (up to 1,000 V DC on special request = "S"-version)
5,000 V DC, 3,000 V AC
10 GΩ min. at 1 kV DC
500 V (1,000 V on special request)
standard > 200 V (> 500 V on special request = "H"-version)
Rth < 0.40 K/W
45 pF (typical), measuring frequency 10 kHz
-55°C to +155°C
1.3 Nm to 1.5 Nm M5 screws
~38 g

Creeping distance:

- Contacts 1 and 2 resp. 3 and 4 without fast-on-Plug: 3 - with fast-on-Plug:
- (4)Contacts 1 and 4 resp. 2 and 3 without fast-on-Plug: - with fast-on-Plug:
- Contacts 2 resp. 3 to base plate - without fast-on-Plug: - with fast-on-Plug:
- 6) Contacts 1 resp. 4 to base plate - without fast-on-Plug: - with fast-on-Plug:

Derating (thermal resist.) VHP: 2.5 W/K (0.40 K/W) (for conf. 3)

Best results can be reached by using a thermal transfer compound with a heat conductivity of at least 1 W/mK. The flatness of the cooling plate must be better than 0.05 mm overall. Surface roughness should not exceed 6.4 μm

How to make a request

VHP-Configuration_Ohmic Value_Tolerance

For example:

20.2 mm

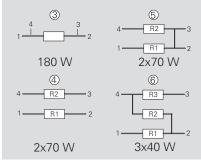
19.0 mm

27.4 mm

25.8 mm

20.2 mm

19.8 mm


19.5 mm

18.9 mm

VHP-5 2x2R 10% or VHP-6 3x8K 5%

Example for higher working voltage: VHP-5-S 10R 5%

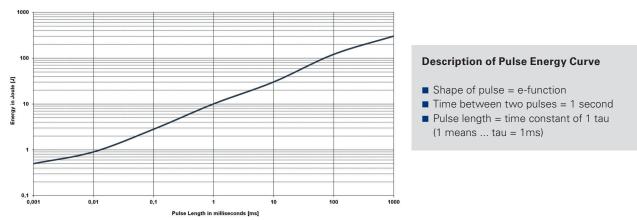
Configurations (P / package)

Version 5: ohmic value between contact 2 and 3 = $3m\Omega$

sales@ebg-resistors.com · sales@ebg-us.com

Series VHP

2/2

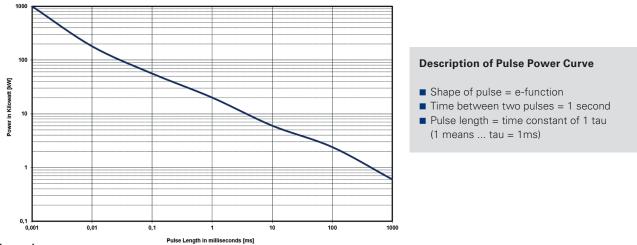

Pulse Energy Curve (typical rating for VHP)

Note: These energy values are reference values \rightarrow depending on ohmic value e.g. 1 Ω to 10 Ω and used resistive paste, a variation in max. energy load capability is possible

Test procedure

Every test resistor was mounted with thermal compound (0.9 W/mK) on a water cooled heatsink

- Constant inlet water temperature: +50°C
- The test time of each tested resistor: 10min.
- Break time between two pulses: 1sec.
- To determine good / defect parts the ohmic value was measured before and after tests: a change of tolerance of more than 0.1% means defect


Example

At 1 ms tau the VHP with e.g. 1 Ω to 10 Ω can withstand an energy level of about 10 J, when the pulse pause time is \geq 1s

At a symmetrical frequency > 1 kHz at pulse length ≥ 10 μsec. the maximum applied pulse energy for VHP is a result out of the nominal power 180 W divided by the operating frequency (at 85°C bottom case) (E = 180 W / F)

Pulse Power Curve (typical rating for VHP)

The power curve shows the max. possible power which can be applied for a certain duration. Referring to the same test procedure as described above.

Example

For the time-constant of 1 ms you can apply about 20 kW max. (Pp = $2 \times E / T$) \rightarrow , if the time between two such peaks is ≥ 1 s

The above spec. sheet features our standard products. For further options please contact our local EBG representative or contact us directly.