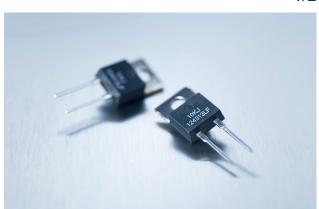
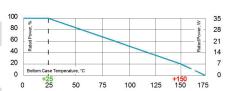
Series MXP 35 TO-220

EBG RESISTORS


35 W Thick Film Resistor for high-frequency and pulse-loading applications

A Miba Group Company

1/2


Features

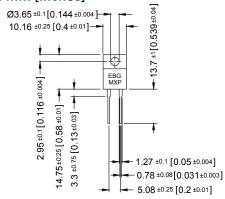
- 35 W operating power
- TO-220 package configuration
- Single-screw mounting simplifies attachment to heat sink
- Molded case for environmental protection
- Resistor element is electrically insulated from the metal sink tab
- Standard lead form for easier fit
- Non-Inductive design
- ROHS compliant
- Materials in accordance with UL 94 V-0

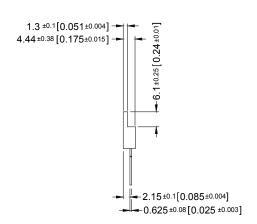
Technical Specifications

Resistance value	$0.05~\Omega \leq 1~M\Omega$ (other values on special request)
Resistance tolerance	± 1 % to \pm 10 % ± 0.5 % on special request for limited ohmic values
Temperature coefficient	< 3 Ω : ask for details \geq 3 Ω < 10 Ω : \pm 100 ppm + 0.002 Ω /°C \geq 10 Ω : \pm 50 ppm/°C (referenced to 25 °C, Δ R taken at +85°C)
Power rating	35 W at 25°C bottom case temperature
Maximum operating voltage	350 V
Dielectric strength voltage	1,800 V AC
Insulation resistance	$>$ 10 G Ω at 1,000 V DC
Momentary overload	2x rated power with applied voltage not to exceed 1.5x maximum continuous operating voltage for 5 sec. $\Delta R \pm (0.3 \% + 0.01 \Omega)$ max.
Load life	MIL-R-39009, 2,000 hours at rated power, ΔR ± (1.0 $\%$ + 0.01 $\Omega)$ max.
Moisture resistance	MIL-STD-202, method 106 $\Delta R = (0.5~\% + 0.01~\Omega)$ max.
Thermal shock	MIL-STD-202, method 107, Cond. F, $\Delta R =$ (0.3 $\%$ + 0.01 $\Omega)$ max.
Working temperature range	-55°C to +175°C
Terminal strength	MIL-STD-202, method 211, Cond. A (Pull Test) 2.4 N, $\Delta R = (0.2 \% + 0.01 \Omega)$ max.
Vibration, high frequency	MIL-STD-202, method 204, Cond. D, $\Delta R = (0.2~\% + 0.01~\Omega)$ max.
Lead material	tinned copper
Torque	0.7 Nm to 0.9 Nm
Heat resistance to cooling plate	Rth < 4.28 K/W
Weight	~2 g

Derating (thermal resist.) MXP-35: 0.23 W/K (4.28 K/W)

Without a heat sink, when in open air at 25°C, the MXP-35 is rated for 2.50 W. Derating for temperature above 25°C is 0.02 W/K.


Case temperature must be used for definition of the applied power limit. Case temperature measurement must be done with a thermocouple contacting the center of the component mounted on the designed heat sink. Thermal grease should be applied properly.


How to make a request

MXP_Ohmic Value_Tolerance

For example: MXP 20R 10%

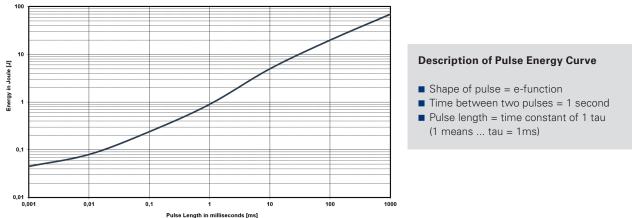
Dimensions in mm [inches]

The above spec. sheet features our standard products. For further options please contact our local EBG representative or contact us directly.

Series MXP 35 TO-220

A Miba Group Company

2/2

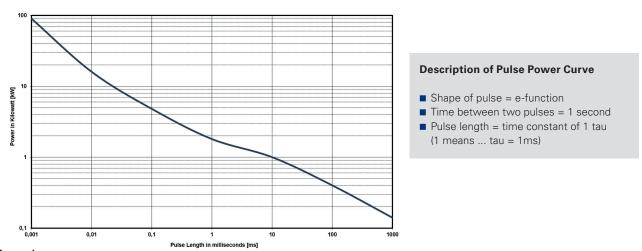

Pulse Energy Curve (typical rating for MXP 35)

Note: These energy values are reference values \rightarrow depending on ohmic value e.g. 1 Ω to 10 Ω and used resistive paste, a variation in max. energy load capability is possible

Test procedure

Every test resistor was mounted with thermal compound (0.9 W/mK) on a water cooled heatsink

- Constant inlet water temperature: +50°C
- The test time of each tested resistor: 10min.
- Break time between two pulses: 1sec.
- To determine good / defect parts the ohmic value was measured before and after tests: a change of tolerance of more than 0.1% means defect


Example

At 1 ms tau the MXP 35 with e.g. 1 Ω to 10 Ω can withstand an energy level of about 0.9 J, when the pulse pause time is \geq 1s

At a symmetrical frequency > 1 kHz at pulse length ≥ 10 µsec. the maximum applied pulse energy for MXP 35 is a result out of the nominal power 35 W divided by the operating frequency (at 25°C bottom case) (E = 35 W / F)

Pulse Power Curve (typical rating for MXP 35)

The power curve shows the max. possible power which can be applied for a certain duration. Referring to the same test procedure as described above.

Example

For the time-constant of 1 ms you can apply about 1.8 kW max. (Pp = 2*E/T) \rightarrow , if the time between two such peaks is ≥ 1 s