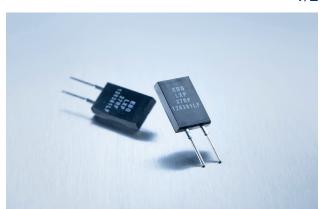
Series LXP-20 TO-220

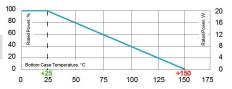
EBG

20 W Thick Film Resistor for high-frequency and pulse-loading applications


A Miba Group Company

1/2

EBG Resistor offers the completely encapsulated and insulated TO-220 package for low ohmic value and Non-Inductive design for high-frequency and pulse-loading applications. Ideal use for power supplies. The LXP-20 series is rated at 20 W mounted to a heat sink.

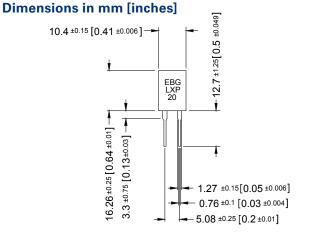

Features

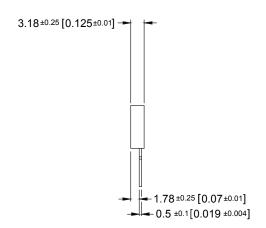
- 20 W operating power
- TO-220 package configuration
- Snap-on style TO-220 heat sink required
- High pulse tolerant design
- A fully molded housing for environmental protection
- Resistor package completely insulated from heat sink
- Non-Inductive design
- ROHS compliant
- Materials in accordance with UL 94 V-0

Technical Specifications

recinical opecinications	
Resistance value	$0.05~\Omega \leq 1~M\Omega$ (higher values on special request)
Resistance tolerance	± 1 % to ± 10 % $_{\pm 0.5}$ % on special request for limited ohmic values
Temperature coefficient	1 Ω < 10 Ω : ±100 ppm + 0.002 Ω /°C \geq 10 Ω : ±50 ppm/°C (referenced to 25°C, Δ R taken at +85°C)
Power rating	20 W at 25°C bottom case temperature depends on case temperature (see power rating curve)
Maximum operating voltage	350 V
Dielectric strength voltage	1,800 V AC
Insulation resistance	$>$ 10 G Ω at 1,000 V DC
Momentary overload	2x rated power with applied voltage not to exceed 1.5x maximum continuous operating voltage for 5 sec. $\Delta R \pm (0.3 \% + 0.001 \Omega)$ max.
Load life	MIL-R-39009, 2,000 hours at rated power, ΔR ±(1.0 $\%$ + 0.001 $\Omega)$
Moisture resistance	MIL-STD-202, method 106, $\Delta R \pm (0.5~\% + 0.001~\Omega)$ max.
Thermal shock	MIL-STD-202, method 107, Cond. F, $\Delta R \pm (0.3~\% + 0.001~\Omega)$ max.
Terminal strength	MIL-STD-202, method 211, Cond. A (Pull Test) 2.4 N, Δ R \pm (0.20 % + 0.001 Ω) max.
Vibration, high frequency	MIL-STD-202, method 204, Cond. D, ΔR ±(0.2 % + 0.001 $\Omega)$ max.
Lead material	tinned copper
Weight	~1,4 g

Derating (thermal resist.) LXP-20: 0.16 W/K (6.25 K/W)


Without a heat sink, when in open air at 25°C, the LXP-20 is rated for 3 W. By using the element with a snap-on heat sink, the resistor is rated for 5 W. Derating for temperature above 25°C is 0.018 W/K.


Case temperature must be used for definition of the applied power limit. Case temperature measurement must be done with a thermocouple contacting the center of the component mounted on the designed heat sink. Thermal grease should be applied properly.

How to make a request

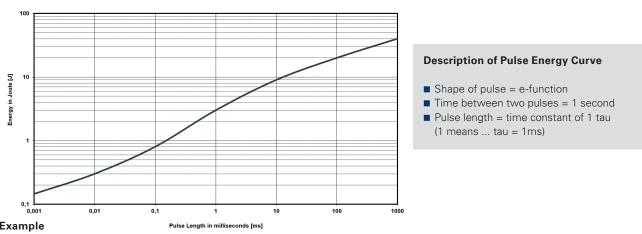
LXP-20_Ohmic Value_Tolerance

For example: LXP-20 20R 10%

Series LXP-20 TO-220

A Miba Group Company

2/2

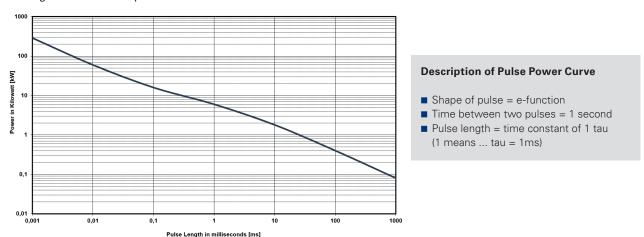

Pulse Energy Curve (typical rating for LXP-20)

Note: These energy values are reference values \rightarrow depending on ohmic value e.g. 1 Ω to 10 Ω and used resistive paste, a variation in max. energy load capability is possible

Test procedure

Every test resistor was mounted with thermal compound (0.9 W/mK) on a water cooled heatsink

- Constant inlet water temperature: +50°C
- The test time of each tested resistor: 10min.
- Break time between two pulses: 1sec.
- To determine good / defect parts the ohmic value was measured before and after tests: a change of tolerance of more than 0.1% means defect



At 1 ms tau the LXP-20 with e.g. 1 Ω to 10 Ω can withstand an energy level of about 3 J, when the pulse pause time is \geq 1s

At a symmetrical frequency > 1 kHz at pulse length ≥ 10 µsec. the maximum applied pulse energy for LXP-20 is a result out of the nominal power 20 W divided by the operating frequency (at 25°C bottom case) (E = 20 W / F)

Pulse Power Curve (typical rating for LXP-20)

The power curve shows the max. possible power which can be applied for a certain duration. Referring to the same test procedure as described above.

Example

For the time-constant of 1 ms you can apply about 6 kW max. (Pp = 2*E / T) \rightarrow , if the time between two such peaks is \geq 1s